The t-Improper Chromatic Number of Random Graphs
نویسندگان
چکیده
We consider the t-improper chromatic number of the Erdős-Rényi random graph Gn,p. The t-improper chromatic number χ(G) of G is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed description of the asymptotic behaviour of χ(Gn,p) over the range of choices for the growth of t = t(n).
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملImproper colouring of (random) unit disk graphs
For any graph G, the k-improper chromatic number χ(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate the ratio of the kimproper chromatic number to the clique number for unit disk graphs and random unit disk graphs to extend results of McDiarmid and Reed (1999); McDiarmid (2003) (where they considered...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملWeighted Improper Colouring
In this paper, we study a colouring problem motivated by a practical frequency assignment problem and up to our best knowledge new. In wireless networks, a node interferes with the other nodes the level of interference depending on numerous parameters: distance between the nodes, geographical topography, obstacles, etc. We model this with a weighted graph G where the weights on the edges repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 29 شماره
صفحات -
تاریخ انتشار 2007